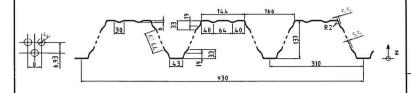
Stahltrapezprofil Typ

M 135.1/310 A

Querschnitts- und Bemessungswerte

EN 1993-1-3


Profiltafel in

Positivlage

Als Typenentwurf

in bautechnischer Hinsicht geprüft Prüfbescheid-Nr. T 18-007 Landesdirektion Sachsen - Landesstelle für Bautechnik -

Leipzig, den 09.03.2018

FREISTAAT SACHSEN Leiter

Anlage 10.5

Bearbeiter

Nennstreckgrenze des Stahlkerns f_{y,k} =

320 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung ³)

Nenn-	Feld-				Elastisch aufnehmbare Schnittgrößen an Zwischenauflagern 1) 2) 4) 5)											
	moment	Endauflager- kraft ⁶)			Lineare Interaktion											
dicke				Quer-	Stützmomente 19)						Zwischenauflagerkräfte 19)					
		$I_{a,A1} = I_{a,A2} = kra$		kraft	l _{a,E}	3 =	I _{a,B} =		l _{a,E}	3 =	I _{a,B} =		I _{a,B} =		I _{a,B} =	
	1	10 mm	40 mm		60 i	mm	160	mm	-		60 mm		160	mm	-	
t _N	M _{c,Rk,F}	R _{w,}	Rk,A	$V_{w,Rk}$	M _{0,Rk,B}	M _{c,Rk,B}	M _{0,Rk,B}	M _{c,Rk,B}	M _{0,Rk,B}	M _{c,Rk,B}	R _{0,Rk,B}	$R_{w,Rk,B}$	R _{0,Rk,B}	$R_{w,Rk,B}$	$R_{0,Rk,B}$	R _{w,Rk,B}
mm	kNm/m		kN/m			kNm/m						kN/m				
0,75	10,13	3,78	5,73	15,45	9,55	7,64	9,55	7,64	-	-	16,51	13,21	24,06	19,25	-	-
0,88	12,72	5,28	7,89	24,83	12,46	9,97	12,46	9,97	-		22,65	18,12	32,76	26,21	-	-
1,00	15,11	6,86	10,14	36,22	15,27	12,22	15,27	12,22	-	·	29,03	23,22	41,73	33,38	-	-
1,13	17,88	8,79	12,85	51,91	18,27	14,62	18,27	14,62	. =		36,68	29,35	52,41	41,93	-	-
1,25	20,26	10,77	15,59	69,84	21,10	16,88	21,10	16,88	-	-	44,41	35,53	63,13	50,50	-	-
1,50	25,17	11,41	16,27	119,23	25,90	20,72	25,90	20,72	-	-	46,12	36,90	64,94	51,95	-	-
1	i l		1	I						i	l l					I

Reststützmomente 7)

	ı	_{a,B} = 60 n	nm	ı	_{a,B} = 160	mm	- 1	_{a,B} = _		Reststützmomente M _{R,Rk}	
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}		
mm	r	n	kNm/m	r	n	kNm/m	r	n	kNm/m	M _{R,Rk} = 0 für L ≤ min l	L
0,75	-	-	-	-	-	-	-	-	2-2		
0,88	-:	~	-	-	-	-	Œ	Ξ.	.=:	M _{R,Rk} = max M _{R,Rk} für L ≥ max	L
1,00	-	- 1	<u>=</u>		-	-	-	*	-		
1,13	-	-	-	-	-	-	-	-	: -8	$M_{R,Rk} = L - min L * max M_{R,R}$	k
1,25	-	-	.=	-	-	-	-	-		max L- min L	
1,50	-	1-1	-	-	-	-	-	-			
				Ì							

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1) 2)

Nenn-	Feld-	E	Befestigung in jedem anliegenden Gurt				Befestigung in jedem anliegenden Gurt Befestigung in jedem 2. anliegenden Gurt						urt
blech-	moment	Endauf-		Linea	are Intera	ktion		Endauf-		Linea	are Intera	ktion	
dicke		lager-		Zwis	schenaufl	ager		lager-		Zwis	schenaufl	ager	
		kraft						kraft					
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M _{0,Rk,B}	M _{c,Rk,B}	R _{0,Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M _{0,Rk,B}	M _{c,Rk,B}	R _{0,Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNr	m/m		kN/m		kN/m	kNr	n/m		kN/m	
0,75	7,64	15,45	12,66	10,13	-	-	15,45	7,73	6,33	5,07	-	-	7,73
0,88	9,97	24,83	15,90	12,72	-	-	24,83	12,41	7,95	6,36	-	-	12,41
1,00	12,22	36,22	18,89	15,11	-	-	36,22	18,11	9,44	7,55	-	-	18,11
1,13	14,62	51,91	22,35	17,88		-	51,91	25,96	11,18	8,94	÷		25,96
1,25	16,88	69,84	25,33	20,26		+	69,84	34,92	12,66	10,13		-	34,92
1,50	20,72	119,23	31,46	25,17	_	1-	119,23	59,61	15,73	12,59		-	59,61
			1						1200				

Fußnoten s. Beiblatt 1/2 bzw. 2/2

Stahltrapezprofil Typ M 135.1/310 A Anlage 10.6 Querschnitts- und Bemessungswerte Als Typenentwurf EN 1993-1-3 in bautechnischer Hinsicht geprüft Positivlage Prüfbescheid-Nr. T 18-007 Profiltafel in Landesdirektion Sachsen - Landesstelle für Bautechnik -Leipzig, den 09.03.2018 FREISTAAT SACHSEN _ tz Leiter Bearbeiter TEKILU Nennstreckgrenze des Stahlkerns fyk = 320 N/mm² Maßgebende Querschnittswerte Normalkraftbeanspruchung Grenzstützweiten 10) Nenn-Eigen-Biegung 8) L_{gr} in m blechlast nicht reduzierter Querschnitt wirksamer Querschnitt 9) dicke Einfeld-Mehrfeld t_N I⁺ef $\Gamma_{\rm ef}$ A_g A_{eff} i_{eff} Zeff träger träger g ig $\mathbf{z}_{\mathbf{g}}$ kN/m² cm⁴/m cm²/m cm²/m cm cm mm 0,086 271,20 257,13 9,12 5,46 8,62 3,99 6,07 8,15 6,95 8,69 0,75 > 10,00 0,101 10,79 9,17 0,88 321,13 315,58 5.46 8,62 5,10 6,06 8,11 > 10,00 8,06 9,58 1,00 0,114 367,01 367,01 12,33 5,46 8,62 6,19 6,06 0,129 416,71 416,71 14,00 5,46 8,62 7,43 6,05 8,02 10,00 > 10,00 1,13 0.143 462,59 462,58 15,54 5,46 8,62 8,64 6,03 7,98 > 10,00 > 10,00 1.25 > 10,00 > 10,00 0,171 558,16 558,16 18,75 5,46 11,16 5.98 8,00 1,50 8.62 Schubfeldwerte Nenn-Grenzzustand der Tragfähigkeit 15) $F_{t,Rk}$ in kN 18) Grenzzustand der Gebrauchstauglichkeit 16) blechdicke T_{1.Rk} T_{crit,g} T_{crit,I} T_{3,Rk,N} T_{3,Rk,S} k₁' Einleitungslänge a L_R 13) 14) t_N ≥ 280 mm ≥ 130 mm kN/m m/kN m²/kN mm m 0,399 69,606 0,75 8,00 20,48 7,68 35,58 1,32 1,27 0.88 8,00 24,23 9,89 54,17 2,01 1,93 0,337 45,719 32,743 12,08 75,64 2,80 2,70 0,295 8,00 27,69 1,00 0,260 23,836 1,13 8,00 31,44 14,62 103,91 3,85 3,70 8,00 34,90 17,10 134,91 5,00 4,81 0,234 18,358 1,25 0,194 11,479 8,00 42,11 22,66 215,75 8,00 7,69 1,50 Beiwerte: 14) 14) ¹⁵) $k_1^* = 3.76 \, 1/kN$ $k_2^* = 2,17 \text{ m}^2/\text{kN}$ $k_3' = 0,884$ Fußnoten s. Beiblatt 1/2 bzw. 2/2

Für V _{v,Rk} /γ _M > 0.5 gilt Gleichung 6.27 (EN 1993-1-3), die im Sinne der Sicherheit vereinfacht werden kann: \[\begin{array}{c} \frac{V_{Ed}}{V_{w,Rk}} \geqrup \ V_{Ed} \\ M_{\overline{R},R}/γ_{M} \end{array} \		Interaktionsbeziehung für M und V (elastisch-elastisch)	Interaktionsbeziehung für M und R (elastisch-elastisch)
Für V _{w,Rk} /γ _{th} > 0,5 gilt Gleichung 6.27 (EN 1993-1-3), die im Sinne der Sicherheit vereinfacht werden kann: M _{Ed} M _{C,Rk,B} /γ _{th} + (2· V _{td} V _{w,Rk} /γ _{th}) + (2· V _{td} V _{w,Rk} /γ _{th}) + (2· V _{td} V _{w,Rk} /γ _{th}) + (2· V _{td} M _{c,Rk,B} /γ _{th}) +		$\frac{M_{Ed}}{M_{c,Rk,B}/\gamma_M} \le 1$ wenn $\frac{V_{Ed}}{V_{w,Rk}/\gamma_M} \le 0.5$	Lineare Interaktionsbeziehung für M und R: $\frac{M_{Ed}}{M_{c,Rk,B}/\gamma_{M}} \leq 1 \text{ und } \frac{F_{Ed}}{R_{w,Rk,B}/\gamma_{M}} \leq 1$
Für rechnerische rmitt Mo,RR,B = 1,25 · M _{o,RR,B}		$\label{eq:Further} F\ddot{\text{ur}}\frac{\text{V}_{\text{Ed}}}{\text{V}_{\text{w,Rk}}/\text{\gamma}_{\text{M}}} > 0.5 \qquad \text{gilt Gleichung 6.27 (EN 1993-1-3), die im Sinne der Sicherheit vereinfacht werden kann:}$	$\frac{M_{Ed}}{M_{0,Rk,B}/\gamma_M} + \frac{F_{Ed}}{R_{0,Rk,B}/\gamma_M} \le 1$
Werden quer zur Spannrichtung und rechtwinklig zur Profilebene Linienlasten in das Trapezprofil eingeleitet, so ist der Nachweis der Tragfähigkeit aus der umgekehrten Profillage als Interaktionsnachweis (vgl. Fußnote 2) durchzuführen. Für kleinere Zwischenauflagerlängen Is.a als angegeben, müssen die aufnehmbaren Tragfähigkeitswerte linear im entsprechenden Verhältnis reduziert werden. Für Is.β < 10 mm, z.B. bei Rohren, darf maximal der Wert für Is.β = 10 mm eingesetzt werden. Bei Auflagerlängen, die zwischen den aufgeführten Auflagerlängen liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden. Der Profilüberstand für die wirksame Auflagerlänge Is.β = 1,5 * hw ausgeführt wird. Die Auflagerlänge Is.β = 1,2 angegebene experimentell bestätigte oder von diesen abgeleitete Werte. Tragfähigkeitsnachweis (plastisch-plastisch) für andrückende Einwirkungen: Stützmomente sind auf die sich aus den jeweils angrenzenden Feldlängen ergebenden Reststützmomente Mas damit unter Bemessungslasten entstehende maximale Feldmoment muss gelten: M _{Ed} ≤ M _{c.Ris.F} /γ _{Ms} . Außerdem ist für die im Endfeld entstehende Endauflagerkräft folgende Bedingung einzuhalten: F _{Ed} ≤ R _{w.Ris.A} /γ _M . Für den Nachweis der Gebrauchstauglichkeit ist am elastischen System nachzuweisen, dass bei g Stützmoment und Auflagerkräft an einer Zwischenstütze die 0,9-fache Beanspruchbarkeit nicht überschritt Sind keine Werte für Reststützmomente angegeben, ist beim Tragfähigkeitsnachweis M _{R.Ris.} = 0 zu setzen. Wirksame Trägheitsmomente für die Lastrichtung nach unten (+) bzw. oben (-). Wirksamer Ouerschnitt für eine konstante Druckspannung σ = f _{y.k} . Wirksamer Ouerschnitt für eine konstante Druckspannung σ = f _{y.k} . M _{Ed} 1 V _{Ed.1} V _{Ed.2} Dabei sind V _{Ed.1} und V _{Ed.2} die Beträge der Querkräfte auf jeder Seite der örtlichen Lasteinleitung oder de Es gilt: V _{Ed.1} und V _{Ed.2} die Beträge der Querkräfte auf jeder Seite der örtlichen Lasteinleitung oder de Es gilt: V _{Ed.1} und V _{Ed.2}		$\frac{M_{Ed}}{M_{c,Rk,B}/\gamma_{M}} + \left(2 \cdot \frac{V_{Ed}}{V_{w,Rk}/\gamma_{M}} - 1\right)^{2} \le 1$	Für rechnerisch ermittelte Werte gilt:
Für kleinere Zwischenauflagerlängen Ia,B als angegeben, müssen die aufnehmbaren Tragfähigkeitswerte linear im entsprechenden Verhältnis reduziert werden. Für Ia,B < 10 mm, z,B. bei Rohren, darf maximal der Wert für Ia,B = 10 mm eingesetzt werden. Bei Auflagerlängen, die zwischen den aufgeführten Auflagerlängen liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden. M _{G,Rk,B} /γ _M + (F _{Ed} M _{G,Rk,B} /	i)	das Trapezprofil eingeleitet, so ist der Nachweis der Tragfähigkeit aus der	$R_{0,Rk,B} = 1,25 \cdot R_{w,Rk,B}$
Bei Auflagerlängen, die zwischen den aufgeführten Auflagerlängen liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden. Der Profilüberstand für die wirksame Auflagerlänge la,A1 ist mit c ≥ 40 mm einzuhalten. Die Auflagerkräft werden, wenn für la,A1 der Profilüberstand c ≥ 1,5 * hw ausgeführt wird. Die Auflagerlänge la,A2 entspricht, a 6.1.7.3(4), der wirksamen Auflagerlänge einschließlich des Profilüberstandes c. Die hier für la,A2 angegebene experimentell bestätigte oder von diesen abgeleitete Werte. Tragfähigkeitsnachweis (plastisch-plastisch) für andrückende Einwirkungen: Stützmomente sind auf die sich aus den jeweils angrenzenden Feldlängen ergebenden Reststützmomente N das damit unter Bemessungslasten entstehende maximale Feldmoment muss gelten: M _{Ed} ≤ M _{c,Rk,F} /γ _M . Außerdem ist für die im Endfeld entstehende Endauflagerkraft folgende Bedingung einzuhalten: F _{Ed} ≤ R _{w,Rk,A} /γ _M . Für den Nachweis der Gebrauchstauglichkeit ist am elastischen System nachzuweisen, dass bei g Stützmoment und Auflagerkraft an einer Zwischenstütze die 0,9-fache Beanspruchbarkeit nicht überschritt Sind keine Werte für Reststützmomente angegeben, ist beim Tragfähigkeitsnachweis M _{R,Rk} = 0 zu setzen. Wirksame Trägheitsmomente für die Lastrichtung nach unten (+) bzw. oben (-). Wirksamer Trägheitsmomente für die Lastrichtung nach unten (+) bzw. oben (-). Maximale Stützweiten, bis zu denen das Trapezprofil ohne Last verteilende Maßnahmen begangen werden Die Werte gelten nur für ßv ≤ 0,2. Für ßv ≥ 0,3 ist der Nachweis mit la,B = 10 mm zu führen. β _V = V _{Ed,1} - V _{Ed,2} Dabei sind V _{Ed,1} und V _{Ed,2} die Beträge der Querkräfte auf jeder Seite der örtlichen Lasteinleitung oder de Es gilt: V _{Ed,1} = V _{Ed,2}	.)	Für kleinere Zwischenauflagerlängen Ia,B als angegeben, müssen die aufnehmbaren Tragfähigkeitswerte linear im entsprechenden Verhältnis reduziert werden. Für Ia,B < 10 mm, z.B. bei Rohren, darf maximal der Wert für Ia,B = 10 mm	Quadratische Interaktionsbeziehung für M und R: $\frac{M_{Ed}}{M_{c,Rk,B}/\gamma_{M}} \leq 1 \text{ und } \frac{F_{Ed}}{R_{w,Rk,B}/\gamma_{M}} \leq 1$
werden, wenn für la,A1 der Profilüberstand c ≥ 1,5 * hw ausgeführt wird. Die Auflagerlänge la,A2 entspricht, a 6.1.7.3(4), der wirksamen Auflagerlänge einschließlich des Profilüberstandes c. Die hier für la,A2 angegebend experimentell bestätigte oder von diesen abgeleitete Werte. 70	5)	Bei Auflagerlängen, die zwischen den aufgeführten Auflagerlängen liegen, dürfen	$-\frac{M_{Ed}}{M_{0,Rk,B}/\gamma_M} + \left(\frac{F_{Ed}}{R_{0,Rk,B}/\gamma_M}\right)^2 \le 1$
Stützmomente sind auf die sich aus den jeweils angrenzenden Feldlängen ergebenden Reststützmomente M das damit unter Bemessungslasten entstehende maximale Feldmoment muss gelten: $ M_{Ed} \leq M_{c,Rk,F}/\gamma_M. $ Außerdem ist für die im Endfeld entstehende Endauflagerkraft folgende Bedingung einzuhalten: $ F_{Ed} \leq R_{w,Rk,A}/\gamma_M. $ Für den Nachweis der Gebrauchstauglichkeit ist am elastischen System nachzuweisen, dass bei g Stützmoment und Auflagerkraft an einer Zwischenstütze die 0,9-fache Beanspruchbarkeit nicht überschritt Sind keine Werte für Reststützmomente angegeben, ist beim Tragfähigkeitsnachweis $M_{R,Rk}=0$ zu setzen. Wirksame Trägheitsmomente für die Lastrichtung nach unten (+) bzw. oben (-). Wirksamer Querschnitt für eine konstante Druckspannung $\sigma=f_{V,k}. $ Maximale Stützweiten, bis zu denen das Trapezprofil ohne Last verteilende Maßnahmen begangen werden Die Werte gelten nur für $g_V \leq 0,2$. Für $g_V \geq 0,3$ ist der Nachweis mit $g_V = \frac{ V_{Ed,1} - V_{Ed,2} }{ V_{Ed,1} + V_{Ed,2} } $ Dabei sind $ V_{Ed,1} $ und $ V_{Ed,2} $ die Beträge der Querkräfte auf jeder Seite der örtlichen Lasteinleitung oder de Es gilt: $ V_{Ed,1} \geq V_{Ed,2} $	i)	werden, wenn für $I_{a,A1}$ der Profilüberstand $c \ge 1,5$ * hw ausgeführt wird. Die Auflage 6.1.7.3(4), der wirksamen Auflagerlänge einschließlich des Profilüberstandes c. Die	erlänge la,A2 entspricht, abweichend von EN 1993-1-
Stützmoment und Auflagerkraft an einer Zwischenstütze die 0,9-fache Beanspruchbarkeit nicht überschritt Sind keine Werte für Reststützmomente angegeben, ist beim Tragfähigkeitsnachweis $M_{R,Rk}=0$ zu setzen. Wirksame Trägheitsmomente für die Lastrichtung nach unten (+) bzw. oben (-). Wirksamer Querschnitt für eine konstante Druckspannung $\sigma=f_{y,k}$. Maximale Stützweiten, bis zu denen das Trapezprofil ohne Last verteilende Maßnahmen begangen werden Die Werte gelten nur für $\beta_{v} \leq 0,2$. Für $\beta_{v} \geq 0,3$ ist der Nachweis mit $\beta_{v} = \frac{ V_{Ed,1} - V_{Ed,2} }{ V_{Ed,1} + V_{Ed,2} }$ Dabei sind $ V_{Ed,1} $ und $ V_{Ed,2} $ die Beträge der Querkräfte auf jeder Seite der örtlichen Lasteinleitung oder de Es gilt: $ V_{Ed,1} \geq V_{Ed,2} $	")	Stützmomente sind auf die sich aus den jeweils angrenzenden Feldlängen ergebend das damit unter Bemessungslasten entstehende maximale Feldmoment muss gelter $M_{Ed} \leq M_{c,Rk,F}/\gamma_M.$ Außerdem ist für die im Endfeld entstehende Endauflagerkraft folgende Bedingung $F_{Ed} \leq R_{w,Rk,A}/\gamma_M.$	n: einzuhalten:
Wirksamer Querschnitt für eine konstante Druckspannung $\sigma = f_{V,k}$. Maximale Stützweiten, bis zu denen das Trapezprofil ohne Last verteilende Maßnahmen begangen werden Die Werte gelten nur für $g_{V} \leq 0.2$. Für $g_{V} \geq 0.3$ ist der Nachweis mit $g_{B,B} = 10$ mm zu führen. $\beta_{V} = \frac{\left V_{Ed,1}\right - \left V_{Ed,2}\right }{\left V_{Ed,1}\right + \left V_{Ed,2}\right }$ Dabei sind $\left V_{Ed,1}\right $ und $\left V_{Ed,2}\right $ die Beträge der Querkräfte auf jeder Seite der örtlichen Lasteinleitung oder de Es gilt: $\left V_{Ed,1}\right \geq \left V_{Ed,2}\right $		Stützmoment und Auflagerkraft an einer Zwischenstütze die 0,9-fache Beanspruch	barkeit nicht überschritten wird (vgl. Fußnote 2).
Maximale Stützweiten, bis zu denen das Trapezprofil ohne Last verteilende Maßnahmen begangen werden Die Werte gelten nur für $\mathbb{G}_{v} \leq 0,2$. Für $\mathbb{G}_{v} \geq 0,3$ ist der Nachweis mit $\mathbb{I}_{a,B} = 10$ mm zu führen. $\beta_{v} = \frac{\left V_{Ed,1}\right - \left V_{Ed,2}\right }{\left V_{Ed,1}\right + \left V_{Ed,2}\right }$ Dabei sind $\left V_{Ed,1}\right $ und $\left V_{Ed,2}\right $ die Beträge der Querkräfte auf jeder Seite der örtlichen Lasteinleitung oder de Es gilt: $\left V_{Ed,1}\right \geq \left V_{Ed,2}\right $			
Die Werte gelten nur für $\mathbb{G}_{v} \leq 0,2$. Für $\mathbb{G}_{v} \geq 0,3$ ist der Nachweis mit $\mathbb{I}_{a,B} = 10$ mm zu führen. $\beta_{v} = \frac{\left V_{Ed,1}\right - \left V_{Ed,2}\right }{\left V_{Ed,1}\right + \left V_{Ed,2}\right }$ Dabei sind $\left V_{Ed,1}\right $ und $\left V_{Ed,2}\right $ die Beträge der Querkräfte auf jeder Seite der örtlichen Lasteinleitung oder de Es gilt: $\left V_{Ed,1}\right \geq \left V_{Ed,2}\right $			hman hagangan wardan darf
Dabei sind $ V_{Ed,1} $ und $ V_{Ed,2} $ die Beträge der Querkräfte auf jeder Seite der örtlichen Lasteinleitung oder de Es gilt: $ V_{Ed,1} \ge V_{Ed,2} $		<u>`</u>	
Es gilt: $ V_{Ed,1} \ge V_{Ed,2} $		$\beta_{v} = \frac{\left V_{Ed,1} \right - \left V_{Ed,2} \right }{\left V_{Ed,1} \right + \left V_{Ed,2} \right }$	
			en Lasteinleitung oder der Auflagerreaktion.
2) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)"	2)	Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte G	renzabmaße (S)"

α2 1,00 1,00 0,75 0,67 0,55 0,50 0,44 0,40 α3 1,00 1,00 0,90 0,80 0,71 0,64 0,58 0,53 (n'b = Anzahl of Querstöße		eiblatt 2/2 E	Erläute	runger	zu de	n Quer	schnit	ts- und	l Beme	ssung	swerten (E	EN 1993-1-3)
$T_{cot,g} = T_{cot,d} \cdot (L_{B}/L_{g})^{2} \text{ mit Ls:} = \text{maximale Einzelstützweite in m. } \\ Für Einfeldträger kann } \\ T_{cot,g} = T_{cot,d} \cdot (L_{B}/L_{g})^{2} \text{ mit Ls:} = \text{maximale Einzelstützweite in m. } \\ \hline T_{cot} = T_{cot,g} \cdot T_{co$	131	ubfelder nach B	ryan/Da	vies								
$T_{2,8k} = 0,7 \cdot \frac{T_{cnt,g} T_{cnt,g}}{T_{cnt,g} + T_{cnt,l}}, \text{ wenn } T_{cnt,l} \text{ angegeben ist. } \text{ Andernfalls ist } T_{2,8k} = 0,7 \cdot T_{cnt,g}.$ $Der Grenzwert der Beanspruchbarkeit zur Einhaltung des maximalen Gleitwinkels 1/750 ergibt sich aus: } T_{4,8k} = \frac{1}{750} \cdot \frac{1}{(k'_1 + 2^2 + k'_2 + 2^4, 1^4 a_1^4 k_3^2)} \cdot 10^4 \text{ mit } L_S = \text{Gesamtlange des Schubfeldes in m.} $ $Die Schubsteifigkeit S zur Berechnung der Gesamtverformung des Schubfeldes unter dem Schubfluss T ergibt sich zu: } S = \frac{10^4}{\left[(k'_1 + 2^2 + k'_1 + 2^2, k'_1 + 2^2, k'_2 +$	13)	$T'_{crit,g} = T_{crit,g} \cdot (L_R/I)$									Tcrit,g verdopp	elt
Der Grenzwert der Beanspruchbarkeit zur Einhaltung des maximalen Gleitwinkels 1/750 ergibt sich aus: $T_{4, \mathrm{fis}} = \frac{1}{750} \cdot \frac{1}{(k_1 \cdot \alpha_2 + k_1^2 \cdot \alpha_4 \cdot \alpha_4 k_2)}{1750} \cdot 10^4 \mathrm{mit Ls} = \mathrm{Gesamtlänge} \mathrm{des} \mathrm{Schubfeldes} \mathrm{in} \mathrm{m.}$ Die Schubsteifigkeit S zur Berechnung der Gesamtverformung des Schubfeldes unter dem Schubfluss T ergibt sich zu: $S = \frac{10^4}{\left[(k_1 \cdot \alpha_2 + k_1^4 \cdot \alpha_1) + \frac{(k_2 \cdot \alpha_1 \cdot \alpha_4 + k_2^2 \cdot \alpha_2)}{k_2} \right]}$ mit e. = Abstand der Verbindungselemente in den Längsstößen in m. Bei Sonderausführung der Befestigung kann kz halbiert werden (Fußnote 19) Beiwerte zu 191 und 19i:	14)											
$T_{A,RR} = \frac{1}{750} \cdot \frac{1}{(k'_1 \cdot q_2 + k'_2 \cdot q_1 \cdot q_d L_S)}{(k'_1 \cdot q_2 + k'_2 \cdot q_1 \cdot q_d L_S)} \cdot 10^4 \text{ mit Ls} = \text{Gesamtlange des Schubfeldes in m.}$ $Die Schubsteifigkeit S zur Berechnung der Gesamtverformung des Schubfeldes unter dem Schubfluss T ergibt sich zu: S = \frac{10^4}{\left[\left(k'_1 \cdot q_2 + k'_1 \cdot e_l\right) + \frac{\left(k'_2 \cdot q_1 \cdot q_4 + k'_2 \cdot q_3\right)}{L_S}\right]}{\frac{1}{L_S}}$ mit e. = Abstand der Verbindungselemente in den Längsstößen in m. Bei Sonderausführung der Befestigung kann k2 halbiert werden (Fußnote 19); Beiwerte zu 15) und 16): $\frac{1}{Anzahl} \frac{1}{Anzahl} $,0										
$S = \frac{10^4}{\left[\left(k', \neg\alpha_2 + k', e_L\right) + \frac{\left(k', 2\neg\alpha_1, \alpha_4 + k'_2, \alpha_3\right)}{L_S}\right]}$ mit $e_L = \text{Abstand der Verbindungselemente in den Längsstößen in m.}$ Bei Sonderausführung der Befestigung kann kz^* halbiert werden (Fußnote ¹⁹⁾) $\frac{Anzahl der Felder \rightarrow 1}{Anzahl der Auflager} \frac{1}{2} \frac{2}{3} \frac{3}{4} \frac{4}{5} \frac{5}{6} \frac{6}{7} \frac{7}{8} \frac{8}{9} \frac{9}{6} \frac{1}{1} $	5)										ergibt sich aus	<u>3:</u>
mit et = Abstand der Verbindungselemente in den Längsstößen in m. Bei Sonderausführung der Befestigung kann k2 halbiert werden (Fußnote 19)) Beiwerte zu 151 und 16: Anzahl der Felder \rightarrow 1 2 3 4 5 6 7 8 9 (ohne Querstoß Schubfeld) Anzahl der Auflager \rightarrow 2 3 4 5 6 7 8 9 (ohne Querstoß Schubfeld) Anzahl der Auflager \rightarrow 2 3 4 5 6 7 8 9 (ohne Querstoß Schubfeld) Anzahl der Auflager \rightarrow 2 3 4 5 6 7 8 9 (ohne Querstoß Schubfeld) Anzahl der Auflager \rightarrow 2 3 4 5 6 7 8 9 (ohne Querstoß Schubfeld) Anzahl der Auflager \rightarrow 2 3 4 5 6 7 8 9 (ohne Querstoß Schubfeld) Anzahl der Auflager \rightarrow 2 3 4 5 6 7 8 9 (ohne Querstoß Schubfeld) Anzahl der Auflager \rightarrow 2 3 4 5 6 7 8 9 (ohne Querstoß Schubfeld) Anzahl der Auflager \rightarrow 2 3 4 5 6 7 8 9 (ohne Querstoß Schubfeld) Anzahl der Auflager \rightarrow 2 3 4 5 6 7 8 9 (ohne Querstoß Schubfeld) Anzahl der Auflager \rightarrow 3 1,00 1,00 0,75 0,67 0,55 0,50 0,44 0,40 (ohne Querstoß Schubfeld) Im Grenzzustand der Tragfähigkeit ist nachzuweisen: $T_{E,d} \leq \frac{T_{1,Rk}}{\gamma_{M,1}}$ und $T_{E,d} \leq \frac{T_{2,Rk}}{\gamma_{M,1}}$ Die Bemessungswerte der Quer- und Auflagerkräfte sind um $F_{Ed,S} = k'_3 \cdot T_{E,d}$ zu vergrößern. Bil Im Grenzzustand der Gebrauchstauglichkeit ist nachzuweisen: $T_{E,d} \leq \frac{T_{3,Rk,N}}{\gamma_{M,ser}}$ oder $T_{E,d} \leq \frac{T_{3,Rk,S}}{\gamma_{M,ser}}$ Der Nachweis von $T_{3,Rk}$ ist nur bei bituminös verklebten Dachaufbauten erforderlich. $T_{E,d} \leq \frac{T_{4,Rk}}{\gamma_{M,ser}}$ Der Nachweis von $T_{3,Rk}$ ist nur bei bituminös verklebten Dachaufbauten erforderlich. Ted Scheibenführungsarten der Befestigung: Eine Sonderausführung der Befestigung ist gegeben, wenn jede Rippe mit je einem Befestigungselement unmittelbar neben des Trapezprofils (siehe Bild 1) befestigt wird. Alternativ darf eine runde oder rechteckige Unterlegscheibe (siehe Bild 2), die mittig eingebrachte Befestigungselement anzuordnen ist, verwendet werden. Die Unterlegscheibe muss den Untergurt in se gesamten ebenen Breite überdecken. Für die Scheibendicke gilt: d \geq 2,7·t _{cor} $\sqrt[3]{c_0}$ und d \geq 2,00 mm mit 1 Unte	6)		eit S zur	Berechnu	ıng der G	esamtvei	formung	des Sch	ubfeldes	unter der	m Schubfluss	<u>T</u>
et = Abstand der Verbindungselemente in den Längsstößen in m. Bei Sonderausführung der Befestigung kann k2* halbiert werden (Fußnote ¹⁹⁾)		$S = \frac{1}{\left[\left(k'_1 \cdot \alpha_2 + k_1^* \cdot e \right) \right]}$	$\frac{10^4}{(k'_2)} + \frac{(k'_2)}{(k'_2)}$	$\frac{\alpha_1 \cdot \alpha_4 + k_1}{L_S}$	$\frac{(\alpha_3)}{2}$							
Anzahl der Felder → 1 2 3 4 5 6 7 8 9 Anzahl der Auflager → 2 3 4 5 6 7 8 9 9 $\alpha_1 = 1,00$		eL = Abstand der Bei Sonderausfüh	rung der						ote ¹⁹⁾)			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1	2	3	4	5	6	7	8	
G2		Anzahl der Aufl	ager →	2	3	4	5	6	7	8	9	
Querstöße im Schu Im Grenzzustand der Tragfähigkeit ist nachzuweisen: $T_{E,d} \le \frac{T_{1,Rk}}{\gamma_{M,1}}$ und $T_{E,d} \le \frac{T_{2,Rk}}{\gamma_{M,1}}$ Die Bemessungswerte der Quer- und Auflagerkräfte sind um $F_{Ed,S} = k'_3 \cdot T_{E,d}$ zu vergrößern. Im Grenzzustand der Gebrauchstauglichkeit ist nachzuweisen: $T_{E,d} \le \frac{T_{3,Rk,N}}{\gamma_{M,ser}}$ oder $T_{E,d} \le \frac{T_{3,Rk,S}}{\gamma_{M,ser}}$ Der Nachweis von $T_{3,Rk}$ ist nur bei bituminös verklebten Dachaufbauten erforderlich. $T_{E,d} \le \frac{T_{4,Rk}}{\gamma_{M,ser}}$ Sonderausführungsarten der Befestigung: Eine Sonderausführung der Befestigung ist gegeben, wenn jede Rippe mit je einem Befestigungselement unmittelbar neben des Trapezprofils (siehe Bild 1) befestigt wird. Alternativ darf eine runde oder rechteckige Unterlegscheibe (siehe Bild 2), die mittig eingebrachte Befestigungselement anzuordnen ist, verwendet werden. Die Unterlegscheibe muss den Untergurt in se gesamten ebenen Breite überdecken. Für die Scheibendicke gilt: d \geq 2,7 \cdot \tau_{cor} \cdot \frac{3}{\cdot \tau_c} \tau \tau \tau \tau \tau \tau \tau \tau		α1		1,00	1,00	0,85	0,70	0,60	0,60	0,60	0,60	$\alpha_4 = 1.3 + 0.3 * n'b$
im Schu Im Grenzzustand der Tragfähigkeit ist nachzuweisen: $T_{E,d} \le \frac{T_{1,Rik}}{\gamma_{M1}}$ und $T_{E,d} \le \frac{T_{2,Rik}}{\gamma_{M1}}$ Die Bemessungswerte der Quer- und Auflagerkräfte sind um $F_{Ed,S} = k'_3 \cdot T_{E,d}$ zu vergrößern. Im Grenzzustand der Gebrauchstauglichkeit ist nachzuweisen: $T_{E,d} \le \frac{T_{3,Rik,N}}{\gamma_{M,ser}}$ oder $T_{E,d} \le \frac{T_{3,Rik,S}}{\gamma_{M,ser}}$ Der Nachweis von $T_{3,Rik}$ ist nur bei bituminös verklebten Dachaufbauten erforderlich. $T_{E,d} \le \frac{T_{4,Rik}}{\gamma_{M,ser}}$ Sonderausführungsarten der Befestigung: Eine Sonderausführung der Befestigung ist gegeben, wenn jede Rippe mit je einem Befestigungselement unmittelbar neben des Trapezprofils (siehe Bild 1) befestigt wird. Alternativ darf eine runde oder rechteckige Unterlegscheibe (siehe Bild 2), dir mittig eingebrachte Befestigungselement anzuordnen ist, verwendet werden. Die Unterlegscheibe muss den Untergurt in se gesamten ebenen Breite überdecken. Für die Scheibendicke gilt: d \geq 2,7\cdot \tau_{cor}\cdot\frac{3}{c_u}\tau \text{und } d \geq 2,00 mm \text{mit} und d \geq 2,00 mm \text{mit} und d \geq 2,00 mm \text{mit} und		α2										(n'b = Anzahl der
T _{E,d} ≤ T _{1,Rk} vnd T _{E,d} ≤ T _{2,Rk} Die Bemessungswerte der Quer- und Auflagerkräfte sind um F _{Ed,S} = k'₃·T _{E,d} zu vergrößern. Im Grenzzustand der Gebrauchstauglichkeit ist nachzuweisen: T _{E,d} ≤ T _{3,Rk,N} oder T _{E,d} ≤ T _{3,Rk,S} vnd,ser		α3		1,00	1,00	0,90	0,80	0,71	0,64	0,58	0,53	im Schubfeld)
Eine Sonderausführung der Befestigung ist gegeben, wenn jede Rippe mit je einem Befestigungselement unmittelbar neben des Trapezprofils (siehe Bild 1) befestigt wird. Alternativ darf eine runde oder rechteckige Unterlegscheibe (siehe Bild 2), die mittig eingebrachte Befestigungselement anzuordnen ist, verwendet werden. Die Unterlegscheibe muss den Untergurt in se gesamten ebenen Breite überdecken. Für die Scheibendicke gilt: $d \ge 2,7 \cdot t_{cor} \cdot \sqrt[3]{\frac{1}{c_u}} \text{ und } d \ge 2,00 \text{ mm}$ mit $I = \text{Untergurtbreite des Trapezprofils}$		$T_{E,d} \le \frac{T_{3,Rk,N}}{\gamma_{M,ser}}$ ode			•				tuminös v	verklebtei	n Dachaufbau	ten erforderlich.
des Trapezprofils (siehe Bild 1) befestigt wird. Alternativ darf eine runde oder rechteckige Unterlegscheibe (siehe Bild 2), die mittig eingebrachte Befestigungselement anzuordnen ist, verwendet werden. Die Unterlegscheibe muss den Untergurt in se gesamten ebenen Breite überdecken. Für die Scheibendicke gilt: $d \geq 2,7 \cdot t_{cor} \cdot \sqrt[3]{\frac{1}{c_u}} \text{ und } d \geq 2,00 \text{ mm}$ mit $I = \text{Untergurtbreite des Trapezprofils}$	9)		gsarten de	er Befes	tigung:							
mit I = Untergurtbreite des Trapezprofils		des Trapezprofils mittig eingebracht gesamten ebenen	(siehe Bil te Befesti Breite üt	ld 1) befe igungsele	stigt wire	d. Alterna	ativ darf	eine rund	e oder re	chteckige	e Unterlegsche	eibe (siehe Bild 2), die unter da
I = Untergurtbreite des Trapezprofils		$d \ge 2.7 \cdot t_{cor} \cdot \sqrt[3]{\frac{1}{c_u}}$	und d≥	2,00 mm	1							
et = Breite der eriteriegserieße		I = Untergurtbre				ofillängsri	chtuna o	der Durc	hmesser	der Unter	rleascheihe	
			_ /		_	\						
		./ \/		4	+	+	+					
Bild 1 Bild 2		7 #					Bild 3					
		* #	Bild 1				DIIU Z					
	:0)	Einzellasten Ft,Rk i	Bild 1 in kN je R	Rippe für	die Einlei			file in Spa	annrichtu	ng ohne	Lasteinleitung	sträger.