Stahltrapezprofil Typ M 40/333 Anlage 6.1 Querschnitts- und Bemessungswerte Als Typenentwurf EN 1993-1-3 in bautechnischer Hinsicht geprüft Profiltafel in Negativlage Prüfbescheid-Nr. T 18-007 Landesdirektion Sachsen - Landesstelle für Bautechnik -Leipzig, den 09.03.2018 FREISTAAT SACHSEN 72 1000 Leiter Bearbeiter Nennstreckgrenze des Stahlkerns fy,k = 320 N/mm² Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung ³) Elastisch aufnehmbare Schnittgrößen an Zwischenauflagern 1) 2) 4) 5) Nenn-Feld-Endauflagermoment Lineare Interaktion blechkraft 6) dicke Stützmomente 19 Zwischenauflagerkräfte 19) Querkraft |_{a,B} = l_{a,B} = $I_{a,B} =$ Ia,B = $I_{a,B} =$ l_{a,B} = $I_{a,A1} =$ $I_{a,A2} =$ 40 mm 60 mm 120 mm 60 mm 120 mm 10 mm M_{0,Rk,B} M_{0,Rk,B} M_{c,Rk,B} R_{w.Rk.B} M_{c,Rk,F} $R_{w,Rk,A}$ $V_{w,Rk}$ M_{c,Rk,B} M_{0,Rk,B} M_{c,Rk,B} $R_{0,Rk,B}$ $R_{w,Rk,B}$ $R_{0,Rk,B}$ $R_{w,Rk,B}$ $R_{0,Rk,B}$ tN mm kNm/m kN/m kNm/m kN/m 0,63 1,03 2,79 4,29 20,39 1,14 0,91 1,14 0,91 12,42 9,93 16,23 12,98 29,52 13,93 18,10 1,30 3,99 6,04 1,46 1,17 1.46 17,42 22,63 0.75 1,17 0,88 1,54 5,51 8,23 37,45 1,83 1,46 1,83 1,46 23,63 18,90 30,53 24,42 1,00 1,76 7,11 10,50 42,81 2,18 1,74 2,18 1,74 30,07 24,06 38,68 30,94 Reststützmomente 7) $I_{a,B} = 60 \text{ mm}$ Reststützmomente M_{R,Rk} $I_{a,B} = 120 \text{ mm}$ $I_{a,B} =$ max M_{R,Rk} t_N min L max L max M_{R,Rk} min L max L max M_{R.Rk} min L max L mm kNm/m kNm/m kNm/m $M_{R,Rk} = 0$ m für L ≤ min L 0,63 0,75 $M_{R,Rk} = \max M_{R,Rk}$ für L≥ max L 0,88 $M_{R,Rk} =$ - max M_{R,Rk} 1,00 L - min L max L- min L Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1) 2) Befestigung in jedem anliegenden Gurt Befestigung in jedem 2. anliegenden Gurt Nenn-Feldmoment Endauf-Lineare Interaktion Lineare Interaktion blech-Endaufdicke lager-Zwischenauflager lager-Zwischenauflager kraft kraft $M_{c,Rk,F}$ $R_{w,Rk,A}$ $M_{c,Rk,B}$ R_{w,Rk,A} $V_{w,Rk}$ $M_{0,Rk,B}$ $V_{w,Rk}$ $M_{0,Rk,B}$ $M_{c,Rk,B}$ t_N $R_{0,Rk,B}$ $R_{w,Rk,B}$ $R_{0,Rk,B}$ $R_{w,Rk,B}$ kN/m kNm/m kN/m kNm/m kNm/m kN/m kN/m mm 20,39 1,29 0,63 0,91 1,03 20,39 10,19 0,64 0,52 10,19 29,52 14,76 1,17 1.63 1,30 29.52 14,76 0.81 0,65 0,75 0,88 1,46 37,45 1,93 1,54 37,45 18,73 0,96 0,77 18,73 42,81 2,20 1,76 42,81 21,40 1,10 0,88 21,40 1,00 Fußnoten s. Beiblatt 1/2 bzw. 2/2

Stahltrapezprofil Typ M 40/333 Anlage 6.2 Querschnitts- und Bemessungswerte Als Typenentwurf EN 1993-1-3 in bautechnischer Hinsicht geprüft Profiltafel in Negativlage Prüfbescheid-Nr. T 18-007 Landesdirektion Sachsen - Landesstelle für Bautechnik -Leipzig, den 09.03.2018 FREISTAAT SACHSEN 72 1000 Leiter Bearbeiter Nennstreckgrenze des Stahlkerns fv.k = 320 N/mm² Maßgebende Querschnittswerte Normalkraftbeanspruchung Grenzstützweiten 10) Nenn-Eigen-L_{gr} in m blech-Biegung 8) nicht reduzierter Querschnitt wirksamer Querschnitt 9) dicke Einfeld-Mehrfeld-I⁺ef $\Gamma_{\rm ef}$ Ag A_{eff} träger träger t_{N} i_{eff} g cm²/m mm kN/m² cm⁴/m cm cm²/m 0,063 10.72 7,86 2,05 0,63 6,78 1,27 0,81 1,72 1,61 0,75 0,075 13,04 10,16 8,16 1,27 0,81 2,89 1,68 1,55 2,50 3,13 1,27 0,088 15,43 1,63 1,47 0.88 12,72 9,65 0.81 3,89 3,00 3,75 17,62 0,100 15,13 11,03 1,00 1,27 0,81 4,91 1,59 1,42 3,30 4,12 Schubfeldwerte Nenn-Grenzzustand der Tragfähigkeit 15) Grenzzustand der Gebrauchstauglichkeit 16) F_{t,Rk} in kN ¹⁸) blechdicke T_{1,Rk} T_{3,Rk,N} T_{3,Rk,S} k₁' k₂' T_{crit,g} T_{crit,I} L_R Einleitungslänge a 11) ¹¹) ¹²) 12) 17) ¹³) ¹⁴) t_N ≥ 280 mm ≥ 130 mm mm m kN/m m/kN m²/kN 0,63 8,00 47,20 0,71 7,00 18,68 0,242 33,515 0,00 0,00 1,37 8,00 56,80 21,097 0,75 0,94 11,12 2,17 29,67 0,201 0,00 0,00 0,88 8,00 67,20 1,21 16,94 3,31 45,18 0,170 13,857 0,00 0,00 1,48 8,00 76,80 23,65 63,08 0.149 9,924 1,00 4.62 0,00 0,00 Beiwerte: $k_2^* = 2,33 \text{ m}^2/\text{kN}$ $k_3' = 0,240$ $k_1^* = 3,5 1/kN$ ¹⁴) Fußnoten s. Beiblatt 1/2 bzw. 2/2

	Interaktionsbeziehung für M und V (elastisch-elastisch)	Interaktionsbeziehung für M und R (elastisch-elastisch)
	$\frac{M_{Ed}}{M_{c,Rk,B}/\gamma_M} \le 1$ wenn $\frac{V_{Ed}}{V_{w,Rk}/\gamma_M} \le 0.5$	Lineare Interaktionsbeziehung für M und R: $\frac{M_{Ed}}{M_{c,Rk,B}/\gamma_{M}} \leq 1 \text{ und } \frac{F_{Ed}}{R_{w,Rk,B}/\gamma_{M}} \leq 1$
	$\label{eq:Further} F\ddot{\text{ur}}\frac{\text{V}_{\text{Ed}}}{\text{V}_{\text{w,Rk}}/\gamma_{\text{M}}} > 0.5 \qquad \text{gilt Gleichung 6.27 (EN 1993-1-3), die im Sinne der Sicherheit vereinfacht werden kann:}$	$\frac{M_{Ed}}{M_{0,Rk,B}/\gamma_M} + \frac{F_{Ed}}{R_{0,Rk,B}/\gamma_M} \le 1$
	$\frac{M_{Ed}}{M_{c,Rk,B}/\gamma_{M}} + \left(2 \cdot \frac{V_{Ed}}{V_{w,Rk}/\gamma_{M}} - 1\right)^{2} \le 1$	Anmerkung: Für rechnerisch ermittelte Werte gilt: $M_{0.Rk,B} = 1,25 \cdot M_{c.Rk,B}$ und
;)	Werden quer zur Spannrichtung und rechtwinklig zur Profilebene Linienlasten in das Trapezprofil eingeleitet, so ist der Nachweis der Tragfähigkeit aus der umgekehrten Profillage als Interaktionsnachweis (vgl. Fußnote 2) durchzuführen.	$R_{0,Rk,B} = 1,25 \cdot R_{w,Rk,B}$
.)	Für kleinere Zwischenauflagerlängen la,B als angegeben, müssen die aufnehmbaren Tragfähigkeitswerte linear im entsprechenden Verhältnis reduziert werden. Für la,B < 10 mm, z.B. bei Rohren, darf maximal der Wert für la,B = 10 mm eingesetzt werden.	Quadratische Interaktionsbeziehung für M und R: $\frac{M_{Ed}}{M_{c,Rk,B}/\gamma_M} \leq 1 \text{ und } \frac{F_{Ed}}{R_{w,Rk,B}/\gamma_M} \leq 1$
5)	Bei Auflagerlängen, die zwischen den aufgeführten Auflagerlängen liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden.	$\frac{M_{Ed}}{M_{0,Rk,B}/\gamma_M} + \left(\frac{F_{Ed}}{R_{0,Rk,B}/\gamma_M}\right)^2 \le 1$
i)	Der Profilüberstand für die wirksame Auflagerlänge $l_{a,A1}$ ist mit $c \ge 40$ mm einzu werden, wenn für $l_{a,A1}$ der Profilüberstand $c \ge 1,5$ * h_w ausgeführt wird. Die Auflage 6.1.7.3(4), der wirksamen Auflagerlänge einschließlich des Profilüberstandes c. Die experimentell bestätigte oder von diesen abgeleitete Werte.	erlänge la,A2 entspricht, abweichend von EN 1993-1-
")	Tragfähigkeitsnachweis (plastisch-plastisch) für andrückende Einwirkungen: Stützmomente sind auf die sich aus den jeweils angrenzenden Feldlängen ergebend das damit unter Bemessungslasten entstehende maximale Feldmoment muss gelter $M_{Ed} \leq M_{c,Rk,F}/\gamma_M$. Außerdem ist für die im Endfeld entstehende Endauflagerkraft folgende Bedingung $F_{Ed} \leq R_{w,Rk,A}/\gamma_M$. Für den Nachweis der Gebrauchstauglichkeit ist am elastischen System nach Stützmoment und Auflagerkraft an einer Zwischenstütze die 0,9-fache Beanspruch Sind keine Wester für Beststützmomente engageben, ist heim Tragfähigkeitsnach und Stützmomente engageben ist heim Tragfähigkeitsnach und Stützmomente engageben ist heim Tragfähigkeitsnach und Stützmomente engageben in den Stützmomente engageben ist heim Tragfähigkeitsnach und Stützmomente engageben in den Stütz	n: einzuhalten: nzuweisen, dass bei gleichzeitigem Auftreten vo barkeit nicht überschritten wird (vgl. Fußnote 2).
;)	Sind keine Werte für Reststützmomente angegeben, ist beim Tragfähigkeitsnachwe Wirksame Trägheitsmomente für die Lastrichtung nach unten (+) bzw. oben (-).	els M _{R,Rk} = 0 zu setzen.
)	Wirksamer Querschnitt für eine konstante Druckspannung $\sigma = f_{y,k}$.	
0)	Maximale Stützweiten, bis zu denen das Trapezprofil ohne Last verteilende Maßnal	hmen begangen werden darf.
1)	Die Werte gelten nur für $\&partial_{Bv} \le 0.2$. Für $\&partial_{Bv} \ge 0.3$ ist der Nachweis mit $l_{a,B} = 10$ mm	zu führen.
	$\beta_{v} = \frac{\left V_{Ed,1} \right - \left V_{Ed,2} \right }{\left V_{Ed,1} \right + \left V_{Ed,2} \right }$	
	Dabei $\operatorname{sind} \left V_{\operatorname{Ed},1} \right $ und $\left V_{\operatorname{Ed},2} \right $ die Beträge der Querkräfte auf jeder Seite der örtliche Es gilt: $\left V_{\operatorname{Ed},1} \right \geq \left V_{\operatorname{Ed},2} \right $	en Lasteinleitung oder der Auflagerreaktion.
2)	Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte G	renzabmaße (S)"

$S = \frac{10^4}{\left[\left(k'_1 \cdot \alpha_2 + k_1^* \cdot e_L\right) + \frac{\left(k'_2 \cdot \alpha_1 \cdot \alpha_4 + k_2^* \cdot \alpha_3\right)}{L_S}\right]}$ mit $e_L = \text{Abstand der Verbindungselemente in den Längsstößen in m.}$ Bei Sonderausführung der Befestigung kann k_2^* halbiert werden (Fußnote ¹⁹⁾) $\frac{\text{Beiwerte zu 15) und 16}}{\text{Anzahl der Felder} \rightarrow} \frac{1}{2} \frac{2}{3} \frac{3}{4} \frac{4}{5} \frac{5}{6} \frac{6}{7} \frac{7}{8} \frac{8}{9}$ $\frac{\alpha_1}{\alpha_2} \frac{1,00}{1,00} \frac{1,00}{0,00} \frac{0,85}{0,70} \frac{0,60}{0,60} \frac{0,60}{0,60} \frac{0,60}{0,60}$ $\frac{\alpha_2}{\alpha_3} \frac{1,00}{1,00} \frac{1,00}{0,90} \frac{0,75}{0,90} \frac{0,60}{0,71} \frac{0,64}{0,64} \frac{0,58}{0,53} \frac{0,53}{0,90}$		eiblatt 2/2 E	Erläute	runger	zu de	n Quer	schnit	ts- und	l Beme	ssung	swerten (E	EN 1993-1-3)
$T_{cn,g} = T_{cnt,g} \cdot (L_{th}/L_{g})^2 \text{ mit Ls:} = \text{maximale Einzelstützweite in m. Für Einfeldträger kann } T_{cnt,g} \text{ verdoppelt wordran.}$ $\frac{141}{T_{2,Re}} = 0.7 \cdot \frac{T_{cnt,g} \cdot T_{vnt,1}}{T_{cnt,g} \cdot T_{cnt,1}}, \text{ wenn } T_{cnt,1} \text{ angegeben ist. } \text{ Andernfalls ist } T_{2,Re} = 0.7 \cdot T_{cnt,g} \cdot T_{vnt,1}}$ $\frac{1}{T_{4,Re}} = \frac{1}{T_{50}} \cdot \frac{1}{(k_1 \cdot q_2 + k_2 \cdot q_1 \cdot q_2 \cdot q_3)}{(k_1 \cdot q_2 + k_2 \cdot q_1 \cdot q_2 \cdot q_3)} \cdot 10^4 \text{ mit Ls:} = \text{Gesamtlange des Schubfeldes unter dem Schubfluss } T_{4,Re} = \frac{1}{T_{50}} \cdot \frac{1}{(k_1 \cdot q_2 + k_1 \cdot q_1)} \cdot 10^4 \text{ mit Ls:} = \text{Gesamtlange des Schubfeldes unter dem Schubfluss } T_{ergibt sich zu:}$ $S = \frac{10^4}{(k_1 \cdot q_2 + k_1 \cdot q_1) + \frac{(k_2 \cdot q_1 \cdot q_4 + k_2 \cdot q_3)}{L_8}}$ mit $e. = \text{Abstand der Verbindungselemente in den Längsstößen in m.}$ Bei Sonderausführung der Befestigung kann k_2 habbiert werden (Fußnote 19) $\frac{1}{2} = \frac{1}{2} 1$	131	ubfelder nach B	ryan/Da	vies								
$T_{2,8k} = 0,7 \cdot \frac{T_{crit,g}T_{crit,g}}{T_{crit,g}T_{crit,g}}, \text{ wenn } T_{crit,g} \text{ angegeben ist. } \text{ Andernfalls ist } T_{2,8k} = 0,7 \cdot T_{crit,g}.$ $Der Grenzwert der Beanspruchbarkeit zur Einhaltung des maximalen Gleitwinkels 1/750 ergibt sich aus: } T_{4,8k} = \frac{1}{750} \cdot \frac{1}{(k'_1 - 2 + k'_2 - 2 + 1 \cdot 2 + k'_2 - 2 + 1 \cdot 2 \cdot 4 \cdot k_2 - 2 \cdot 3)}{(k'_1 - 2 + k'_1 - 2 \cdot k_1 + 2 \cdot k'_2 - 2 \cdot 3 \cdot 4 \cdot k_2 - 2 \cdot 3)} $ mit e. = Abstand der Verbindungselemente in den Längsstößen in m. Bei Sonderausführung der Befestigung kann k_2 * halbiert werden (Fußnote t^{19}) $\frac{Beiverte zu 15) \text{ und } 16:}{Anzahl der Felder} \rightarrow \frac{1}{2} \frac{2}{3} \frac{3}{4} \frac{4}{5} \frac{5}{6} \frac{6}{7} \frac{7}{8} \frac{8}{9} \frac{9}{9} \frac{1}{100} 1$	13)	$T'_{crit,g} = T_{crit,g} \cdot (L_R/I)$									Tcrit,g verdopp	elt
Der Grenzwert der Beanspruchbarkeit zur Einhaltung des maximalen Gleitwinkels 1/750 ergibt sich aus: $T_{4,\mathrm{fis}} = \frac{1}{750} \cdot \frac{1}{(k_1^2 \cdot \alpha_2^2 + 2\alpha_1^2 \cdot \alpha_4^2 k_2^2)} \cdot 10^4 \text{mit Ls} = \text{Gesamtlänge des Schubfeldes in m.}$ Die Schubsteifigkeit S zur Berechnung der Gesamtverformung des Schubfeldes unter dem Schubfluss T ergibt sich zu: $S = \frac{10^4}{\left[(k_1^4 \cdot \alpha_2^2 + k_1^4 \cdot e_k) + \frac{(k_2^2 \cdot \alpha_1^4 \cdot a_4 + k_2^2 \cdot \alpha_3^2)}{k_2^2}\right]}$ mit et = Abstand der Verbindungselemente in den Längsstößen in m.	14)	Der Grenzwert der Beanspruchbarkeit infolge Beulen ergibt sich aus:										
$T_{A,RR} = \frac{1}{750} \cdot \frac{1}{(k'_1 \cdot q_2 + k'_2 \cdot q_1 \cdot q_d k_B)}{(k'_1 \cdot q_2 + k'_2 \cdot q_1 \cdot q_d k_B)} \cdot 10^4 \text{ mit Ls} = \text{Gesamtlange des Schubfeldes in m.}$ $Die Schubsteifigkeit S zur Berechnung der Gesamtverformung des Schubfeldes unter dem Schubfluss T ergibt sich zu: S = \frac{10^4}{\left[\left(k'_1 \cdot q_2 + k'_1 \cdot e_l\right) + \frac{\left(k'_2 \cdot q_1 \cdot q_4 + k'_2 \cdot q_3\right)}{L_B}\right]}{\frac{1}{1000}}$ mit e. = Abstand der Verbindungselemente in den Längsstößen in m. Bei Sonderausführung der Befestigung kann k2 halbiert werden (Fußnote 19); $Beiwerte zu 15) und 1e): $ $Anzahl der Felder \rightarrow 1 1 2 3 4 5 6 7 8 9 0 (ohne Querstoß Schubfeld) q_1 1,00 1,00 0,85 0,70 0,60 0,60 0,60 0,60 0,60 q_2 1,00 1,00 0,75 0,67 0,55 0,50 0,44 0,40 q_3 1,00 1,00 0,75 0,67 0,55 0,50 0,44 0,40 q_3 1,00 1,00 0,90 0,80 0,71 0,64 0,58 0,53 q_4 1,00 2,00 1,00 0,75 0,55 0,50 0,44 0,40 q_4 1,04 0,40 q_5 1,18 und T_{E,d} \le \frac{T_{1,RR}}{T_{MI}} Die Bemessungswerte der Quer- und Auflagerkräfte sind um T_{E,d} \le \frac{T_{1,RR}}{T_{M,Ser}} Der Nachweis von T_{3,Rk} ist nur bei bituminös verklebten Dachaufbauten erforderlich. Te, d \frac{T_{1,RR}}{T_{M,Ser}} Der Nachweis von T_{3,Rk} ist nur bei bituminös verklebten Dachaufbauten erforderlich. Te, d \frac{T_{1,RR}}{T_{M,Ser}} Der Nachweis von T_{3,Rk} ist nur bei bituminös verklebten Dachaufbauten erforderlich. Te, d \frac{T_{1,RR}}{T_{M,Ser}} Der Nachweis von T_{3,Rk} ist nur bei bituminös verklebten Dachaufbauten erforderlich. Te, d \frac{T_{1,RR}}{T_{M,Ser}} Der Nachweis von T_{3,Rk} ist nur bei bituminös verklebten Dachaufbauten erforderlich. Te, d \frac{T_{1,RR}}{T_{M,Ser}} Der Nachweis von T_{3,Rk} ist nur bei bituminös verklebten Dachaufbauten erforderlich. Te, d \frac{T_{1,RR}}{T_{M,Ser}} Der Nachweis von T_{3,Rk} ist nur bei bituminös verklebten Dachaufbauten erforderlich. Te, d \frac{T_{1,RR}}{T_{M,Ser}} Der Nachweis von T_{3,Rk} ist nur bei bituminös verklebten Dachaufbauten erforderlich. Te, d \frac{T_{1,RR}}{T_{1,RR}} Die Bemessungswerte der Quer- und Auflagerkräfte sind $,0										
$S = \frac{10^4}{\left[\left(k'_1 \cdot \alpha_2 + k'_1 \cdot e_L\right) + \frac{\left(k'_2 \cdot \alpha_1 \cdot \alpha_4 + k'_2 \cdot \alpha_3\right)}{L_S}\right]}}{\frac{10^4}{\left[\left(k'_1 \cdot \alpha_2 + k'_1 \cdot e_L\right) + \frac{\left(k'_2 \cdot \alpha_1 \cdot \alpha_4 + k'_2 \cdot \alpha_3\right)}{L_S}\right]}}}{\frac{10^4}{L_S}}$ mit e.t. = Abstand der Verbindungselemente in den Längsstößen in m. Bei Sonderausführung der Befestigung kann kz halbiert werden (Fußnote 19)) $\frac{10^4}{Anzahl der Felder} \rightarrow \frac{1}{1} \frac{2}{2} \frac{3}{3} \frac{4}{4} \frac{5}{5} \frac{6}{6} 7 8 9 \frac{3}{4}$ Anzahl der Auflager $\rightarrow 2$ 2 3 4 4 5 6 7 8 9 9 Schubfeld) $\frac{10^4}{4} \frac{1}{4} 1$	5)											<u>3:</u>
mit et = Abstand der Verbindungselemente in den Längsstößen in m. Bei Sonderausführung der Befestigung kann k2 halbiert werden (Fußnote 19)) Beiwerte zu 151 und 16: Anzahl der Felder \rightarrow 1 2 3 4 5 6 7 8 9 (ohne Querstoß Schubfeld) Anzahl der Auflager \rightarrow 2 3 4 5 6 7 8 9 (ohne Querstoß Schubfeld) α 1 1,00 1,00 0,85 0,70 0,60 0,60 0,60 0,60 0,60 0,60 0,60	16) Die Schubsteifigkeit S zur Berechnung der Gesamtverformung des Schubfeldes unter dem Schubfluss T										<u>T</u>	
et = Abstand der Verbindungselemente in den Längsstößen in m. Bei Sonderausführung der Befestigung kann k2* halbiert werden (Fußnote ¹⁹⁾)												
Anzahl der Felder → 1 2 3 4 5 6 7 8 9 Anzahl der Auflager → 2 3 4 5 6 7 8 9 9 $\alpha_1 = 1,00$		eL = Abstand der Bei Sonderausfüh	rung der						ote ¹⁹⁾)			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1	2	3	4	5	6	7	8	
$\frac{\alpha_2}{\alpha_3} = \frac{1,00}{1,00} = \frac{1,00}{0,90} = \frac{0,67}{0,55} = \frac{0,50}{0,50} = \frac{0,44}{0,40} = \frac{0,40}{0,58} = \frac{0,53}{0,53}$ $(n'b = Anzahl of Querstöße im Schulffeld of Schulffeld$		Anzahl der Aufl	ager →	2	3	4	5	6	7	8	9	
Querstöße im Schull Grenzzustand der Tragfähigkeit ist nachzuweisen: $T_{E,d} \leq \frac{T_{1,Rk}}{\gamma_{M1}} \text{ und } T_{E,d} \leq \frac{T_{2,Rk}}{\gamma_{M1}} \text{Die Bemessungswerte der Quer- und Auflagerkräfte sind um } F_{Ed,S} = k'_3 \cdot T_{E,d} \text{ zu vergrößern.}$ $Im \text{ Grenzzustand der Gebrauchstauglichkeit ist nachzuweisen:}$ $T_{E,d} \leq \frac{T_{3,Rk,N}}{\gamma_{M,ser}} \text{oder } T_{E,d} \leq \frac{T_{3,Rk,S}}{\gamma_{M,ser}} \text{Der Nachweis von } T_{3,Rk} \text{ ist nur bei bituminös verklebten Dachaufbauten erforderlich.}$ $T_{E,d} \leq \frac{T_{4,Rk}}{\gamma_{M,ser}}$ Sonderausführungsarten der Befestigung: Eine Sonderausführung der Befestigung ist gegeben, wenn jede Rippe mit je einem Befestigungselement unmittelbar neben des Trapezprofils (siehe Bild 1) befestigt wird. Alternativ darf eine runde oder rechteckige Unterlegscheibe (siehe Bild 2), di mittig eingebrachte Befestigungselement anzuordnen ist, verwendet werden. Die Unterlegscheibe muss den Untergurt in se gesamten ebenen Breite überdecken. Für die Scheibendicke gilt: $d \geq 2,7 \cdot t_{cor} \cdot \sqrt[3]{\frac{1}{c_u}} \text{ und } d \geq 2,00 \text{ mm}$ mit $I = \text{Untergurtbreite des Trapezprofils}$		α1		1,00	1,00	0,85	0,70	0,60	0,60	0,60	0,60	$\alpha_4 = 1.3 + 0.3 * n'b$
im Schu Im Grenzzustand der Tragfähigkeit ist nachzuweisen: $T_{E,d} \le \frac{T_{1,Rik}}{\gamma_{M1}}$ und $T_{E,d} \le \frac{T_{2,Rik}}{\gamma_{M1}}$ Die Bemessungswerte der Quer- und Auflagerkräfte sind um $F_{Ed,S} = k'_3 \cdot T_{E,d}$ zu vergrößern. Im Grenzzustand der Gebrauchstauglichkeit ist nachzuweisen: $T_{E,d} \le \frac{T_{3,Rik,N}}{\gamma_{M,ser}}$ oder $T_{E,d} \le \frac{T_{3,Rik,S}}{\gamma_{M,ser}}$ Der Nachweis von $T_{3,Rik}$ ist nur bei bituminös verklebten Dachaufbauten erforderlich. $T_{E,d} \le \frac{T_{4,Rik}}{\gamma_{M,ser}}$ Sonderausführungsarten der Befestigung: Eine Sonderausführung der Befestigung ist gegeben, wenn jede Rippe mit je einem Befestigungselement unmittelbar neben des Trapezprofils (siehe Bild 1) befestigt wird. Alternativ darf eine runde oder rechteckige Unterlegscheibe (siehe Bild 2), di mittig eingebrachte Befestigungselement anzuordnen ist, verwendet werden. Die Unterlegscheibe muss den Untergurt in se gesamten ebenen Breite überdecken. Für die Scheibendicke gilt: d \geq 2,7\cdot \tau_{cor}\cdot\frac{3}{c_u}\tau \text{und } d \geq 2,00 mm \text{mit} = Untergurtbreite des Trapezprofils		α2										(n'b = Anzahl der
T _{E,d} ≤ T _{1,Rk} vnd T _{E,d} ≤ T _{2,Rk} Die Bemessungswerte der Quer- und Auflagerkräfte sind um F _{Ed,S} = k'₃·T _{E,d} zu vergrößern. Im Grenzzustand der Gebrauchstauglichkeit ist nachzuweisen: T _{E,d} ≤ T _{3,Rk,N} oder T _{E,d} ≤ T _{3,Rk,S} vnd,ser		α3		1,00	1,00	0,90	0,80	0,71	0,64	0,58	0,53	im Schubfeld)
Eine Sonderausführung der Befestigung ist gegeben, wenn jede Rippe mit je einem Befestigungselement unmittelbar neben des Trapezprofils (siehe Bild 1) befestigt wird. Alternativ darf eine runde oder rechteckige Unterlegscheibe (siehe Bild 2), di mittig eingebrachte Befestigungselement anzuordnen ist, verwendet werden. Die Unterlegscheibe muss den Untergurt in se gesamten ebenen Breite überdecken. Für die Scheibendicke gilt: $d \ge 2,7 \cdot t_{cor} \cdot \sqrt[3]{\frac{1}{c_u}} \text{ und } d \ge 2,00 \text{ mm}$ mit $I = \text{Untergurtbreite des Trapezprofils}$		$T_{E,d} \le \frac{T_{3,Rk,N}}{\gamma_{M,ser}}$ ode			•				tuminös v	verklebtei	n Dachaufbau	ten erforderlich.
des Trapezprofils (siehe Bild 1) befestigt wird. Alternativ darf eine runde oder rechteckige Unterlegscheibe (siehe Bild 2), di mittig eingebrachte Befestigungselement anzuordnen ist, verwendet werden. Die Unterlegscheibe muss den Untergurt in se gesamten ebenen Breite überdecken. Für die Scheibendicke gilt: $d \geq 2,7 \cdot t_{cor} \cdot \sqrt[3]{\frac{1}{c_u}} \text{ und } d \geq 2,00 \text{ mm}$ mit $I = \text{Untergurtbreite des Trapezprofils}$	9)		gsarten de	er Befes	tigung:							
mit I = Untergurtbreite des Trapezprofils	Eine Sonderausführung der Befestigung ist gegeben, wenn jede Rippe mit je einem Befestigungselen des Trapezprofils (siehe Bild 1) befestigt wird. Alternativ darf eine runde oder rechteckige Unterlegse mittig eingebrachte Befestigungselement anzuordnen ist, verwendet werden. Die Unterlegscheibe m gesamten ebenen Breite überdecken.									e Unterlegsche	eibe (siehe Bild 2), die unter da	
I = Untergurtbreite des Trapezprofils												
et = Brothe der einterlegserleibe		I = Untergurtbreite des Trapezprofils										
		./ \/		4	+	+	+					
Bild 1 Bild 2		7 #					Bild 3					
		* #	Bild 1				DIIU Z					
	:0)	Einzellasten Ft,Rk i	Bild 1 in kN je R	Rippe für	die Einlei			file in Spa	annrichtu	ng ohne	Lasteinleitung	sträger.